Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis.
نویسندگان
چکیده
The master cytokine TGF-β mediates tissue fibrosis associated with inflammation and tissue injury. TGF-β induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix proteins. Canonical TGF-β signaling mobilizes Smad2 and Smad3 transcription factors that control fibrosis by promoting gene expression. However, the importance of TGF-β-Smad2/3 signaling in fibroblast-mediated cardiac fibrosis has not been directly evaluated in vivo. Here, we examined pressure overload-induced cardiac fibrosis in fibroblast- and myofibroblast-specific inducible Cre-expressing mouse lines with selective deletion of the TGF-β receptors Tgfbr1/2, Smad2, or Smad3. Fibroblast-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced the pressure overload-induced fibrotic response as well as fibrosis mediated by a heart-specific, latency-resistant TGF-β mutant transgene. Interestingly, cardiac fibroblast-specific deletion of Tgfbr1/2, but not Smad2/3, attenuated the cardiac hypertrophic response to pressure overload stimulation. Mechanistically, loss of Smad2/3 from tissue-resident fibroblasts attenuated injury-induced cellular expansion within the heart and the expression of fibrosis-mediating genes. Deletion of Smad2/3 or Tgfbr1/2 from cardiac fibroblasts similarly inhibited the gene program for fibrosis and extracellular matrix remodeling, although deletion of Tgfbr1/2 uniquely altered expression of an array of regulatory genes involved in cardiomyocyte homeostasis and disease compensation. These findings implicate TGF-β-Smad2/3 signaling in activated tissue-resident cardiac fibroblasts as principal mediators of the fibrotic response.
منابع مشابه
YAP/TAZ Are Mechanoregulators of TGF-β-Smad Signaling and Renal Fibrogenesis.
Like many organs, the kidney stiffens after injury, a process that is increasingly recognized as an important driver of fibrogenesis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are related mechanosensory proteins that bind to Smad transcription factors, the canonical mediators of profibrotic TGF-β responses. Here, we investigated the role of YAP/TA...
متن کاملProstacyclin Analogue Beraprost Inhibits Cardiac Fibroblast Proliferation Depending on Prostacyclin Receptor Activation through a TGF β-Smad Signal Pathway
Previous studies showed that prostacyclin inhibited fibrosis. However, both receptors of prostacyclin, prostacyclin receptor (IP) and peroxisome proliferator-activated receptor (PPAR), are abundant in cardiac fibroblasts. Here we investigated which receptor was vital in the anti-fibrosis effect of prostacyclin. In addition, the possible mechanism involved in protective effects of prostacyclin a...
متن کاملAtrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7.
RATIONALE Tachycardia-induced atrial fibrosis is a hallmark of structural remodeling of atrial fibrillation (AF). The molecular mechanisms underlying the AF-induced atrial fibrosis remain unclear. OBJECTIVE To determine the role of angiotensin II (Ang II)/Ang II type 1 (AT(1)) receptor-coupled transforming growth factor (TGF)-β(1)/Smad signaling pathway in the AF-induced atrial fibrosis. ME...
متن کاملTGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review)
After hepatitis virus infection, plasma transforming growth factor (TGF)-β increases in either the acute or chronic inflammatory microenvironment. Although TGF-β is upregulated in patients with hepatocellular carcinoma, it is one of the most potent growth inhibitors for hepatocytes. This cytokine also upregulates extracellular matrix (ECM) production of hepatic stellate cells. Therefore, TGF-β ...
متن کاملEditorial: Advances in Mechanisms of Renal Fibrosis
Scarring of the glomerular and tubulointerstitial compartments is a hallmark of progressive kidney disease and is considered a common pathway leading to end-stage of renal failure. Renal fibrosis involves a complex interplay between intrinsic kidney cells, leukocytes, and fibroblasts in which transforming growth factor-β (TGF-β) plays a key role. Inhibition of TGF-β1 suppresses renal fibrosis i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 127 10 شماره
صفحات -
تاریخ انتشار 2017